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A B S T R A C T

We review the history of human-automation interaction research, assess its current status and identify future

directions. We start by reviewing articles that were published on this topic in the International Journal of

Human-Computer Studies during the last 50 years. We find that over the years, automated systems have been

used more frequently (1) in time-sensitive or safety-critical settings, (2) in embodied and situated systems, and

(3) by non-professional users. Looking to the future, there is a need for human-automation interaction research

to focus on (1) issues of function and task allocation between humans and machines, (2) issues of trust, incorrect

use, and confusion, (3) the balance between focus, divided attention and attention management, (4) the need for

interdisciplinary approaches to cover breadth and depth, (5) regulation and explainability, (6) ethical and social

dilemmas, (7) allowing a human and humane experience, and (8) radically different human-automation inter-

action.

1. Introduction

The concepts of automation, and mechanized and automated work

have been around for decades. According to the Britannica en-

cyclopedia, automation is “the application of machines to tasks once

performed by human beings or, increasingly, to tasks that would otherwise be

impossible. Although the term mechanization is often used to refer to the

simple replacement of human labour by machines, automation generally

implies the integration of machines into a self-governing system.”

(Groover, 2018).

The above definition of automation does not involve the require-

ment of a computer processor. However, many modern forms of auto-

mated (or sometimes: autonomous) machines, such as power plant

monitoring devices, automated cars, drones, robots, and chatbots, do

involve computers. These computer-automated systems are used by

humans, and humans are expected to remain essential contributors to

artificial systems and automated systems in the future (Stone et al.,

2016). The study of human-computer interaction, or more specifically

human-automation interaction, therefore continues to remain relevant

as automated systems are used to support more and more everyday

activities, overseen by non-technical and non-professional end-users.

In this special issue to celebrate the 50th anniversary of the

International Journal of Human-Computer Studies, and its predecessor

the International Journal of Man-Machine Studies (from now on

collectively referred to as IJHCS), we review the contributions that

IJHCS has made towards the study of human-automation interaction.

We therefore analyze published work from the journal to distill historic

trends. Our analysis shows that human-automation interaction is a field

that keeps expanding into new domains and contexts (what we refer to

as “breadth”), and also keeps improving its performance within do-

mains and contexts (what we refer to as “depth”). Given these expan-

sions, and the exposure to more contexts and to a wider and more di-

verse group of end-users, there is a potential for the broader human-

computer interaction community to contribute skills and knowledge to

create and evaluate safe, engaging, and productive automated systems.

We close our analysis by discussing eight trends that we deem of

particular relevance for this community, classified in two segments.

First, we discuss trends that have been around for a while but continue

to remain important: (1) function and task allocation between humans

and machines, (2) trust, incorrect use, and confusion, and (3) the bal-

ance between focus, divided attention and attention management.

Then, we discuss emerging themes: (4) the need for interdisciplinary

approaches to cover breadth and depth, (5) regulation and explain-

ability, (6) ethical and social dilemmas, (7) allowing a human and

humane experience, and (8) radically different human-automation in-

teraction.
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2. History of human-automation interaction

To gain an overview of the number of articles that were published

on the topic of human-automation interaction in IJHCS over its 50 year

existence, we conducted a Scopus search on January 14th 2019. We

collected all articles that had the word “automation”, “automated”, or

“autonomous” in either the title, abstract, or keywords. Table 1 reports

the number of articles that matched the search query per topic and

decade, together with the total number of articles that was published in

IJHCS that decade.

The topic of automation covers a substantial subset of the published

work in IJHCS: 4–11% of published articles in each decade, with

around 5–6% of the articles in the last two decades. These percentages

should be interpreted as approximate values, as the count is limited by

the keywords that authors used in their paper's title, abstract and

keywords section. There might be false alarms (papers that were re-

turned based on keywords, but that did not directly address research on

human-automation interaction) and misses (papers that are relevant for

the field of human-automation interaction, but did not include these

specific keywords).

To gain a richer understanding of the themes that are discussed in

IJHCS papers on human-automation interaction, our initial keyword

search was followed by a qualitative analysis. For this analysis, we

sorted the IJHCS papers on human-automation interaction by year of

publication. We then read the titles and abstracts of these papers to pick

up common themes per decade. This revealed four themes which align

well with more general trends in artificial intelligence (e.g., Russell and

Norvig, 2009, chapter 1) and human-computer interaction (e.g.,

Carroll, 2013). However, as the analysis method is subjective in nature,

and limited by the papers that were published in IJHCS, we do not

claim that we have identified all strands of human-automation inter-

action research that occurred over the last five decades. We do claim

that we identified relevant themes, which are discussed in more detail

next.

2.1. Start: automation for dedicated domains

Publications on automation in IJHCS largely started off with the

study of dedicated, domain specific systems. In the 1970s and 1980s a

large proportion of published work (around 25 papers) focused speci-

fically on the development and evaluation of automated psychological

tests (for overview papers, see e.g. Elithorn et al., 1982; Thompson and

Wilson, 1982). The widespread introduction of computers allowed

psychology researchers to conduct interactive tasks on computers, in-

stead of just pen-and-paper tests or subjective assessment. Nowadays,

digital testing is common in experimental studies involving human

participants, and has given rise to opportunities for conducting large-

scale studies using crowdsourcing platforms, like Amazon's Mechanical

Turk (see Gould et al., 2018 for a review). Given the rise and ubiquity of

personal computing devices, the idea of completing an online survey

would now hardly qualify as an example of “automation” anymore.

A second dedicated domain in which automation was researched is

knowledge acquisition (Feigenbaum, 1977). As reviewed in a previous

IJHCS special issue (Motta, 2013), one of the main aims within this

domain in the 1980s was to be able to develop methods to ‘extract’

knowledge from experts that can be represented in machines. Among

our dataset of papers on automation, the top-cited papers from the

1980s all proposed methods for knowledge elicitation (e.g., Belkin

et al., 1987; Diederich et al., 1987; Gruber and Cohen, 1987). Since the

1980s there has been a general shift in perspective that successful

knowledge acquisition and knowledge engineering requires more than

extracting knowledge. Considerations of systems engineering and al-

lowing smart inferences based on multiple sources (e.g., through the

internet) are now seen to be key, with modern day knowledge acqui-

sition research taking on a broad and multi-disciplinary perspective

(see also Motta, 2013; Gaines, 2013; Breuker, 2013).

2.2. Time-sensitive and safety-critical settings

Throughout the last five decades of IJHCS, automation research has

branched out into more domains and settings. One distinct class of re-

search is on tasks that are time-sensitive (i.e., require a response within

a finite, short time interval) and/or safety-critical (i.e., where an in-

correct action can have disastrous consequences). Work in this area has

been published in every decade, but particularly in the 1990s and early

2000s. The range of settings in which time-sensitive and safety-critical

tasks have been studied is diverse and varied: from monitoring dynamic

processes in factories (e.g., Lee and Moray, 1994), power plants (e.g.,

Vicente et al., 2001), and other professional settings (e.g., Bahner et al.,

2008; van Gigh, 1971), to flight monitoring (e.g., Singh et al., 1997;

Skitka et al., 1999, 2000), and semi-automated driving (e.g., Rajaonah

et al., 2008, Seppelt and Lee, 2007).

The diversity of domains (and the importance of preventing in-

cidents) has allowed an exploration of deep general topics throughout

the history of IJHCS, which remain relevant for today's research. They

include topics such as how to distribute or allocate tasks between hu-

mans and machines (Dearden et al., 2000; Hollnagel and Bye, 2000;

Press, 1971; Sheridan, 2000; de Vries et al., 2003; Milewski and Lewis,

1997), finding the right levels of workload to avoid under- and overload

(Van Gigh, 1971; Rajaonah et al., 2008), how to promote appropriate

levels of trust in automation (Dzindolet et al., 2003; Lee and Moray,

1994), and how to avoid incorrect use and (human) errors such as

through complacency (Bahner et al., 2008) or (human) biases (Skitka

et al., 1999, 2000). We will return to the current status of these topics in

more detail in our section on the future of human-automation inter-

action.

2.3. Embodied, situated agents

Since the 1990s there has been a gradual shift away from static

systems for specific domains (e.g., expert systems, systems for psycho-

logical testing) to systems that involve a dynamic intelligent agent that

performs a task (e.g., Milewski and Lewis, 1997; Zeng and Sycara,

1998). This continues in the 2000s, with a rise of papers on automated

systems that act in a dynamic, physical world. This parallels the po-

pularization in Artificial Intelligence (AI) research of embodied, si-

tuated agents (Pfeifer and Scheier, 2001): systems that have their own

sensors and that depend on interaction with the environment for per-

formance. For example, in the 2000s IJHCS published various studies

on physical robots (e.g., Kaber et al., 2006; Sakamoto et al., 2005) and

cars (Rajaonah et al., 2008; Seppelt and Lee, 2007). In parallel, there is

also research published on affective interaction with robots, and auto-

mated (emotion) feature detection (e.g., Bailenson et al., 2008; Brave

et al., 2005; Partala and Surakka, 2003). These topics continue in the

2010s, but also broaden out to include, for example, research on

human-robot interaction with multiple robots (Chien et al., 2018).

Table 1

Articles in IJHCS that self-identified as covering automation, per decade compared to the total number of articles that appeared in the journal that year.

Topic 1969–1979 1980–1989 1990–1999 2000–2009 2010–2019 Total

Articles on “automated”, “automation” or “autonomous” in IJHCS 13 82 37 49 37 218

Reference: total articles in IJHCS per decade 334 696 764 728 727 3249
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The relevance of considering embodied and situated robotics and

automation explicitly is that the actions of embodied, situated systems

(at least in part) depend on how the world is perceived through the

machine's sensors, and through the environment in which the machine

interacts (Pfeifer and Scheier, 2001). Different machines can (learn to)

act differently if either their sensors have different capabilities or if they

are trained in different kinds of environments.

Generalization to unknown settings, and adaptation to new settings,

requires extensive training for these embodied, situated robots.

Automated vehicles are an example of an embodied, situated robot that

acts in and adapts to unknown settings. For automated vehicles,

training typically consists of a combination of extensive experience

under real-world driving conditions, as well as extensive simulated

training sessions to learn how to act in other potential worlds

(Madrigal, 2017). By contrast, earlier simpler automated systems, such

as, closed-world factory systems, or virtual systems such as a digital

psychological test or expert system, require relatively less extensive

testing due to their reliance on the assumptions of a closed world.

2.4. Rise of the non-professional users

As chips get smaller and gain more capacity, smart and automated

technology is becoming more widely available for use by non-profes-

sional users. These users have often not been trained in how to use or

operate the system and often do not have a detailed technical under-

standing of how the automation works and the limitations on its suc-

cessful operation. The last trend that we observe is then that there has

been an increase in research on automation for use outside of profes-

sional settings. For example, the availability of smart phones and other

smart devices that are connected to the internet and allow users to

interact with automated systems and processes. Some examples that are

covered in IJHCS include electronic shopping (e.g., Hassanein and

Head, 2007), robots as social companions (e.g., Leite et al., 2013), and

control of semi-automated vehicles (e.g., Rajaonah et al., 2008; Seppelt

and Lee, 2007).

While many of the topics that apply to professional (skilled) users of

automated systems also apply to non-professional users, there are some

additional considerations that come into play for research on how non-

professional users interact with automated systems. For example, for

non-professional users one cannot rely on extensive training and ex-

perience with the technology, and the technology might be used in a

wider set of context than that which can be predicted by the profession.

Study of use by non-professional users is therefore an emerging setting,

discussed in more detail below that requires the full breadth of HCI

expertise. Moreover, the use by non-professional users requires further

consideration of more ethical topics such as human attitudes towards

and acceptance of autonomous systems (Złotowski et al., 2017) and

how to handle security and hacking (Chen et al., 2018; Ferreira and

Teles, 2019).

2.5. Summary of human-automation interaction research to date

In summary, our analysis of publications in IJHCS on the topic of

human-automation interaction shows that research has expanded be-

yond the use of automation in dedicated domains such as factory as-

sembly lines and automated psychological tests. In particular, there are

distinct research lines that investigate the use of automation in time-

sensitive or safety-critical settings, through embodied situated agents,

and by non-professional users.

Fig. 1 provides a Venn diagram with examples of automated systems

for each of these research lines. The Venn diagram also makes explicit

how these different areas fit together. Specifically, it identifies that

there are many domains and settings in which two or more of these

research lines come together. A prime example is the automated car,

which involves automation in the form of an embodied, situated agent,

which is used by non-professional users in a time-sensitive, safety-

critical context.

For embodied, situated systems some form of automation (or au-

tonomy) is almost always required (although by definition, humans can

also be considered embodied situated agents, Pfeifer and

Scheier, 2001). Hence in our Venn Diagram of Fig. 1, embodied, si-

tuated agents are represented as a subset of the larger automation ca-

tegory. Moreover, whether something is considered embodied and si-

tuated might at times be open to interpretation. For example, we opted

that a power plant monitoring system is not labeled as embodied and

situated, even though such systems can sense and act to maintain a

balance in the power plant's processes (e.g., increase or decrease

cooling). Our motivation for not including it as a fully embodied, si-

tuated agent was that—from our understanding—these systems tend to

rely on if-then rules and are less open to dynamic situations that our

other examples (e.g., cars and military drones) face.

3. Future of human-automation interaction: evergreen themes

We now turn our attention to the future of human-automation in-

teraction research, by describing themes that are important for future

work. We start by describing three themes that are “evergreens”:

themes that were also covered in the past, but that continue to be im-

portant areas for research. In particular, these themes require further

expansion due to the breadth of domains and users that are involved in

automated settings. After discussing these evergreen topics, we go on to

discuss five new topics in human-automation interaction that we expect

to increase in importance over the coming years.

3.1. Function and task allocation between humans and machines

The first theme that has had persistent attention in IJHCS research

on automation is the distribution or allocation of tasks between humans

and automated systems (e.g., Dearden et al., 2000; Hollnagel and Bye,

2000; Press, 1971; Sheridan, 2000; de Vries et al., 2003; Milewski and

Lewis, 1997). A simple, naive understanding of the introduction of

automation might be that automated systems take over the execution of

tasks from humans, and thereby simply ‘reduce’ the amount of work or

attention that humans need to dedicate to that task. A colloquial un-

derstanding is for example that people are better at some tasks (e.g., to

exercise judgment) and machines are better at other tasks (e.g., to

perform repetitive routine tasks; Fitts, 1951). However, as analyzed in

detail by Sheridan (2000), achieving such allocation in practice is a

hard problem, as researchers differ in what they set as appropriate

criteria for the function allocation.

In line with this view, it is important to consider the so-called “irony

of automation” (Bainbridge, 1983), which states that introduction of

automation can radically change how people perceive or act in a spe-

cific context. People do not merely reduce what they work on when

(part of) a task is automated, but use different strategies for working on

that task altogether. For example, one intention of semi-automated

vehicles is that the human driver is responsible for fewer basic control-

monitoring tasks (e.g., steering, pressing the gas), and can therefore

switch his or her attention to monitoring the traffic environment and

the vehicle. However, a meta-review of research on driving assistance

systems suggests that the introduction of automation increases the

likelihood that drivers perform non-driving related tasks, which reduces

their situational awareness and response time to alerts (de Winter et al.,

2014).

Although the problem of function allocation, and related themes,

such as the irony of automation, have been known for decades, the

associated research questions gain new urgency now that automation is

being used by non-professional users in time-sensitive and safety-cri-

tical contexts. An underestimation of user interaction in these domains

can lead to incidents, and non-professional users might lack the training

and experience to cope with system failures. Moreover, they might

underestimate risks or misplace their trust in the system. For example,
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in the first deadly incident with a Tesla model S (a partially automated

vehicle), the human driver had a prolonged period of visual distraction

shortly before the crash (Habib, 2017). Although the cause of this

distraction is unknown, misplaced trust in the automation might have

been a factor.

Automation might also change how, when, and where tasks are

performed. For example, if cars become more automated, will they turn

into mobile offices (Chuang et al., 2018), or areas of fun and play

(Kun et al., 2016)? That is, automation might be a radical disruptive

innovation that changes more than just the task itself.

3.2. Trust, incorrect use, and confusion

The second major theme of human-automation interaction to have

received persistent attention in IJHCS over the years is how to promote

appropriate levels of trust in automation (Dzindolet et al., 2003; Lee

and Moray, 1994), how to avoid incorrect use and (human) errors (e.g.,

Bahner et al., 2008; Skitka et al., 1999, 2000), and how to avoid con-

fusion.

Parasuraman and Riley (1997) introduced four distinct types of use

of automation that can impact a user's trust in a system. Initial use

might already depend on trust, but on top of that users and other sta-

keholders of automation might misuse the automation (i.e., show

overreliance, or too much trust), disuse it (i.e., under rely on the auto-

mation and distrust it, for example due to false alarms), or abuse it (i.e.,

introducing the automation without considering all the consequences of

it, in line with the irony of automation, Bainbridge, 1983). These four

forms of use, and their impact on trust are still relevant today. They are

particularly relevant now that non-professional users are using auto-

mation in more settings. As they lack the training and experience of

professional users, they might bring in incorrect expectations of the

capabilities of the automated system, resulting in misuse or disuse.

How a user uses automation, and how they perceive trust can also

be looked at more dynamically, based on a user's understanding of the

system's mode of operation over time. The mode, or state, of an auto-

mated system determines its response to user input and to changes in

the overall context of the system. For example, in automated vehicles,

cruise control and adaptive cruise control can be two automation

modes. When human drivers or operators engage adaptive cruise con-

trol, their vehicle will attempt to maintain a given speed, but will slow

down if there is slower traffic ahead; in contrast the same vehicle with

(non-adaptive) cruise control will not slow down for slower vehicles

ahead. The human operator needs to keep track of mode changes, and

also remember how the system will react to user input and context

changes in the current mode. Mode confusion (mode error) occurs when

the human operator is confused about the current mode of the system,

or cannot remember how the system will react in the current mode

(Sarter and Woods, 1992).

Mode confusion is highly consequential for safety-critical systems,

such as road vehicles, power plants, airplanes, robotic wheelchairs, and

flight control systems. In the above example, if the driver mistakenly

believes that the vehicle is in the adaptive cruise control mode, when it

is actually in (non-adaptive) cruise control (i.e., a form of misuse of

automation in Parasuraman and Riley's terms), the result can be a crash.

Janssen et al. (2019) discuss this issue in the driving domain by in-

troducing a probabilistic (Hidden Markov Model) framework that re-

lates driver beliefs of the system's mode to actual system modes. Such

frameworks make explicit in what system states mode confusion might

occur, and can aid in the (re-) design of safety-critical systems.

Mode confusion can also happen in other contexts.

Vicente et al. (2001) point out that power plants are highly complex

systems, which means that some part of the plant will always be under

repair or in a state of being modified. This effectively changes the mode,

or state, of the plant, and requires operators to act accordingly. Mode

confusion might result in a misinterpretation of alarms: depending on

the mode of the power plant, an alarm might indicate an actual problem

or an expected state of operation.

In the coming years, human interactions with automation will

continue to be subject to mode confusion. The reason is twofold. First,

automation is not the same as autonomy: our automated systems will be

very good at what they do, but in some difficult cases, or in legally

mandated situations, they will require human intervention. Second,

automated systems will continue to be applied in a variety of complex

situations—after all, that is where they are the most useful. However,

Fig. 1. Venn Diagram of current types of human-automation interaction research (not to scale). Automated systems are developed for use by non-professional users,

in time-sensitive or safety-critical systems. Embodied situated systems are a subset of automated systems that have seen a rise since the early 2000s.
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use in complex situations will result in multiple modes of operation

(Sarter and Woods, 1995). Researchers need to focus on creating

models of mode confusion for different application areas, (e.g.

Janssen et al., 2019). Such models can then be used in the design and

evaluation of systems that reduce the frequency, and the consequences,

of these errors.

3.3. Focus, divided attention, and attention management

A third theme that has had persistent attention in IJHCS research on

automation is creating appropriate workload levels for the human in-

teracting with automation so as to avoid under- and overload (Van

Gigh, 1971; Rajaonah et al., 2008). Taking a broader perspective, one

can say there is a need to understand focus, divided attention, and at-

tention management.

As automation continues to improve, automated tasks might require

less human attention and intervention. This allows humans to focus on

other activities, such as (other) work and play. At the same time, re-

searchers expect that humans will continue to play a role in automated

systems such as cars, even under higher levels of automation (e.g.,

Janssen et al., 2019; Lee et al., 2017; Noy et al., 2018; Stone et al.,

2016). For example, occasional human aid might be needed if the au-

tomated system encounters an off-nominal scenario. In such a case,

humans need to revert their attention to the automated task, even

though they might feel that their preceding task was more urgent to

them. These situations require a detailed understanding of multitasking

and interleaving processes (see also special issue in IJHCS,

Janssen et al., 2015), and a new view on attention management.

Focusing on automated vehicles, a large body of research has in-

vestigated the effectiveness of providing last-minute alerts to warn

drivers about situations where human assistance is needed. However, in

such automated circumstances, people's susceptibility to alerts is re-

duced (Van der Heiden et al., 2018; Lahmer et al., 2018; Scheer et al.,

2018). Moreover, even if an alert is processed, mode confusion might

limit the human driver's understanding of their role and limit their

ability to take the right action (Janssen et al., 2019). Novel perspectives

on attention management might be needed to minimize these dangers.

For example, in our own work we have investigated the use of earlier

warnings (pre-alerts) to warn drivers before their action is critical

(Van der Heiden et al., 2017; see also Borojeni et al., 2018). Beyond

simply providing warnings, more research is needed into how the

human and the machine can be partners in a task, instead of one taking

over the task of the other and only warning in case of emergency. The

success of such systems will rely both on the system's ability to assess

(e.g., model and predict) the human state and understanding, and also

on the human's ability to understand the system's functioning.

4. Future of human-automation interaction: emerging themes

To close, we discuss five themes that are emerging as important

topics in automation research, and which we expect to increase in

importance over the years to come.

4.1. Interdisciplinary studies to cover breadth and depth of domains and

users

Our review of the IJHCS literature has shown that over the past five

decades, research on human-automation interaction has broadened out

into different areas. We expect that automated systems will continue to

broaden out into new domains as the principles and methods behind

automated technologies aimed at professional users start to penetrate

the broader consumer market aimed at non-professional users. For ex-

ample, automated features from commercial airplanes might make it

over to non-commercial airplanes that are used by trained, but less

experienced pilots.

At the same time, even though technology branches out, in a sense

automated technology is often still specialized and limited, and its ac-

curacy can be improved. In the home environment there are dedicated

machines for vacuuming, lawn mowing, or playing music, but few de-

vices that combine such tasks. Personal virtual assistants like Amazon's

Alexa, Apple's Siri, or Google Assistant can aid in many tasks, but have

limited capabilities (e.g., Cohen et al., 2016; Cowan et al., 2017). On

the road, automated cars can tackle ever more complex and demanding

situations, but still have exceptions where human assistance is needed.

In other words, there are opportunities for improvements in both the

“depth” (i.e. improving performance on specific tasks) and the

“breadth” (i.e., how many tasks and contexts they can handle) of stu-

dies on automated systems.

As part of the branching out, automated systems will be used more

frequently by non-professional users and with this comes a set of im-

portant questions about human-automation interaction. For example,

how are users trained to work with automated safety-critical devices?

How are their skills on a task retained if it is not put to use frequently

(see also Casner et al., 2014)? How are different cultures, and different

norms, customs, and conventions facilitated? Will the adoption and use

of automated systems benefit a variety of user groups (e.g., automated

vehicles hold the potential for improved mobility for people who

cannot drive or do not have access to their own vehicle)?

4.2. Regulation and explainability

The regulatory landscape for automation depends heavily on the

application area. Thus, regulation is well-developed for established

fields, such as for relatively simple medical devices. However, new

interconnected medical devices present a challenge for regulation

(Sokolsky et al., 2011). Even more so, medical robotics, where auto-

mation can take on various forms, presents a significant challenge for

regulators—in fact, autonomous robots will not only be medical devices

but also entities that practice medicine, and it is not yet clear who

would be in charge of regulating them (Yang et al., 2017). Similarly,

regulation is still under development for cars, where automation is only

now making significant advances (Inners and Kun, 2017).

A large push on automation research comes from European legis-

lation on “explainability”. In the context of recent data protection laws,

European laws now require that decisions that are made for humans by

automated systems are explainable to the humans (European Union,

2016, 2018; see also Goodman and Flaxman, 2017). Automated system

and (machine learning) algorithms make many decisions, but the rea-

sons for these decisions might be opaque to the end user

(Burrell, 2016). Moreover, the (decision) models that the algorithms

create to inform their actions necessarily abstract away from some

details in the world. Such abstraction can result in ‘traps’ (Selbst et al.,

2018) such as an inability to take all of the relevant features into ac-

count in decision making (as some were left out in the abstraction) or to

transfer learned behavior to new settings (where other features are

perhaps more important).

Explainability is not always straightforward for embodied, situated

automated systems such as automated cars, as these systems make

many decisions over time. For example, at any given time there is an

explicit or implicit decision to accelerate or decelerate, and whether to

make a steering adjustment (i.e., Michon's control level; Michon, 1985).

Should cars be able to explain these decisions continuously? And should

this be done in real-time? Or should only more strategic decisions

(Michon, 1985) such as why particular routes were chosen be ex-

plainable? Or is only hindsight explanation needed surrounding (near-)

accidents? Although ideally a system should be able to make multiple

explanations, whether they do this can impact a user's attention, and

might also have impact on system performance (i.e., when dedicating

capacity to the storing of decisions). From a human-computer interac-

tion perspective, explainability of automated systems should at least be

present to avoid mode confusion (Janssen et al., 2019) and to avoid

alert fatigue and the so-called “cry-wolf effect” (Breznitz, 1983; Sorkin,
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1989).

Like humans, automated machines are not always “perfect”. The

algorithms behind automated systems often get trained on data, and the

resulting decision systems might be limited by the data (“Garbage in,

garbage out”). Specifically, through the training set, the algorithms

might pick up on biases or inequalities that exist in society, which can

have consequences for the end users. For example, if a gender classi-

fication algorithm is trained to classify people based on their physical

features, it might overlook that biological sex and self-identified gender

labels might not align, and the resulting misgendering might have ne-

gative impacts on mental health (Hamidi et al., 2018).

Humans might be able to help learning systems to overcome their

biases. For example, in recently proposed guidelines for human-AI in-

teraction, five of the eighteen guidelines focus on ways to help users

correct the mistakes of an AI system (Amershi et al., 2019). However, it

is an open question how to design such systems in practice, in particular

as there might be a disconnect between the low-level features that a

system needs to adjust to improve, and the high-level concepts that a

user (incorrectly) thinks they need to adjust (e.g., Kittley-Davies et al.,

2019).

From a legislative perspective, an important question is then also

who is to blame when an accident or incident occurs involving an au-

tomated system in a safety-critical setting. An initial thought might be

to think locally, with the human operator or the producer, programmer,

or seller of the technology. However, the introduction of automation is

sometimes motivated by a narrative to reduce the frequency or prob-

ability of accidents and incidents. Approaching these from a probabil-

istic viewpoint raises the question of what is an acceptable probability

of risk, and how this risk is spread over the population. The con-

sideration of risk at the population level, then turns the question of

“who is to blame” into a question that is probably larger than one in-

dividual.

4.3. Ethical and social dilemmas

As automated machines achieve more functionality, various ethical

and social dilemmas become more urgent and prominent. Our overview

of the history of IJHCS already touched on one such issue: are in-

creasingly autonomous systems socially accepted as equals

(Złotowski et al., 2017)?

Another ethical and social consideration is that of the future of work

and job security. A model by Frey and Osborne (2017) predicts that

low-skill and low-wage jobs, such as in transportation, logistics, and

office work, in particularly are likely to be replaced by automation.

Frey and Osborne predict that this will require a shift in skillsets by

human workers to tasks that require creativity or social skills. From our

perspective, it is unclear whether this prediction will hold, as our lit-

erature review of IJHCS articles indicates that research is already in-

vestigating topics such as emotion classification and social interaction

between humans and robots (e.g., Brave et al., 2005; Hassanein and

Head, 2007; Kapoor et al., 2007; Leite et al., 2013). Therefore, we ex-

pect that in the years to come there will be more progress on (partial)

automation of creative tasks and social interaction settings than an-

ticipated in the report by Frey and Osborne. If this happens, the ethical

and social question of job security will be plainly evident.

Moreover, automation might not increase at a steady, linear pace.

For example, Harari (2018) predicts that the pace of improvements in

automation might also accelerate as time goes on, thereby making it

ever harder for people to catch up with the increasing changes in au-

tomation and to adapt their skillset. How are humans then equipped for

these societal changes? How do we make sure that we create devices

that are there for human users? But also, how can technology help to

achieve a world that provides opportunity for all, and not just for a

fortunate minority?

Another ethical consideration is what decisions automated systems

should take in complex life-or-death situations that are imminent in

safety-critical scenarios. Survey research shows that humans would like

automated machines to make morally just decisions in principle, yet

they also want the system to deviate from this moral path if a moral

action would require sacrificing their own life or that of their family

members (Bonnefon et al., 2016). Moreover, the survey research shows

that there are individual and cultural differences in what is considered

morally just (Awad et al., 2018). Given that humans cannot agree on

moral conflicts, a lot more research is needed to guide the regulation of

automated systems. For example, the Ethics Commission on Automated

and Connected Driving, which was appointed by the German govern-

ment, has developed a set of twenty ethical rules related to the design,

deployment, legal issues, and use of automated vehicles

(Ethics Commission, 2017).

Taken together, the full set of social and ethical considerations also

poses a fundamental question: whether to automate at all or not? In

most safety-critical scenarios where automation is introduced, such as

automated driving, the intention is that introduction of automation or

automated support can save lives and reduce incidents. However, the

new technology can also introduce new problems and incidents. A

moral judgment is needed whether the benefits weigh up against the

challenges. Although the inclination of some researchers might be to

minimize new incidents, this might overlook the benefits of automation

(see also de Winter, 2019).

4.4. Continued and improved human and humane experiences

Implicit in the previously discussed trends is the need to consider

human experience. With automation improving, how can we continue

to maintain a fair and humane interaction (see also section on ethics)?

Which aspects of tasks do we automate, and which tasks do we leave to

the human? In line with the historical trend of automated testing (e.g.,

Elithorn et al., 1982; Thompson and Wilson, 1982) and expert systems

(Motta, 2013; Gaines, 2013; Breuker, 2013), we might expect more

software tasks to become automated in the coming few years. But which

parts are automated? How is creativity and expertise embedded cor-

rectly? If creativity is essential for human contributions to an auto-

mated task, how do we ensure that humans can contribute this, and

how do we know when and where it is needed? Or, if humans would

like to focus on other aspects of a task, apart from creativity, how do we

continue to allow them to do so? For example, in a world where au-

tomated vehicles have penetrated the market, will we allow occasional

human driving “just for fun”? How can this be done in a world where

other cars might rely on the predictability of non-human actions to

maintain a stable driving trajectory? If we do not allow humans to

contribute to such tasks and activities, how do we allow a humane

experience in other ways? The answers to these questions are not yet

clear, but needed.

4.5. Radical changes to human-automation interaction

As we look into the future, technological advances in human-ma-

chine interaction, automation, artificial intelligence, and related dis-

ciplines are likely to usher in dramatic change in how we live with

computing devices. Although such radical shifts are hard to predict

accurately, some suggestions and trends are noticeable.

One such change is imagined by Yuval Noah Harari in his book “21

lessons for the 21st century” (Harari, 2018)—he envisions a world in

which AI will become better than we are at many tasks. If this happens,

then one question for human-automation design will be how human

users can best use such super-smart AI. Will the humans enjoy the in-

teractions and engage in them? Will they engage with AI while having

the appropriate level of trust, taking into account both the benefits and

the potential costs of the interactions? Or will they act like the humans

in Asimov's (1954) novel “Caves of Steel,” where the people of the Earth

of about 1000 years in the future fear and reject robots, and the com-

forts that robots can provide humanity?
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Another dramatic change is envisioned by the futurist Mark

Pesce—he expects that we will be able to associate digital data with

physical objects and view this data through augmented reality glasses

(Pesce, 2019). Pesce expects that this will lead to the emergence of

what he calls ‘supertools’: tools that can allow us to interact with

computing objects, and thus with the automation around us, while

having at our disposal vast amounts of data about all aspects of the

work of automation. One significant question for human-computer in-

teraction design in this case is how to allow users to interact with this

vast amount of data. Simply put, there will be too much data available

for users to be able to handle it all, which means that human-computer

interaction design will need to create focused views of the data.

Turning to art again, and specifically the science fiction of Asimov:

imagine what it might be like to interact with automation if our in-

terface technologies can go beyond showing us information with aug-

mented reality! What if the interfaces could make us feel like the ma-

chine is an extension of our body? This is what it feels to operate an

advanced starship in Asimov's (1982) “Foundation's Edge”—the effort

required to accomplish something is about as much as to think about

the goal. Perhaps Asimov overestimated the probability that machines

will eventually be able to literally read our minds. But, we can still

expect that our minds and the machine automation will not always be

separated by keyboards, screens, and brittle speech interfaces. How will

radically more capable interfaces affect how we can control automa-

tion, and just as importantly, how we perceive automation and its place

in our lives?

As we contemplate the inevitable radical changes in human-auto-

mation interaction, it is important to keep asking questions. What are

the economic and societal forces that are driving the changes? How will

new technologies shape what is possible for these interactions? And

what are the economic and broad societal implications of these dra-

matic changes? The answers to these questions will be found through

interdisciplinary work that incorporates a clear understanding of

human-automation interaction, and leverages it effectively.

Many previous eras of human development have included radical

change in technology, but we expect the change to be faster than it had

been in the past. Where will this change lead us? For all of the themes

we mentioned in this document, except for this last one, we have rea-

sonably clear plans for how to move forward. For some of them, our

horizon extends relatively far, for others not that far.

In sum, human-automation interaction research has been an area of

exciting and impactful work for many decades. The readers of IJHCS,

and more broadly the scientific community, should expect this trend to

accelerate in the coming years.
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